skip to main content


Search for: All records

Creators/Authors contains: "Goldenstein, Christopher S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents the development and application of a broadband ultrafast-laser-absorption-spectroscopy (ULAS) technique operating in the mid-infrared for simultaneous measurements of temperature, methane (CH4), and propane (C3H8) mole fractions. Single-shot measurements targeting the C-H stretch fundamental vibration bands of CH4and C3H8near 3.3 µm were acquired in both a heated gas cell up to ≈650K and laminar diffusion flames at 5 kHz. The average temperature error is 0.6%. The average species mole fraction errors are 5.4% for CH4and 9.9% for C3H8. This demonstrates that ULAS is capable of providing high-fidelity hydrocarbon-based thermometry and simultaneous measurements of both large and small hydrocarbons in combustion gases.

     
    more » « less
  2. This manuscript presents an ultrafast-laser-absorption-spectroscopy (ULAS) diagnostic capable of providing calibration-free, single-shot measurements of temperature and CO at 5 kHz in combustion gases at low and high pressures. Additionally, this diagnostic was extended to provide 1D, single-shot measurements of temperature and CO in a propellant flame. A detailed description of the spectral-fitting routine, data-processing procedures, and determination of the instrument response function are also presented. The accuracy of the diagnostic was validated at 1000 K and pressures up to 40 bar in a heated-gas cell before being applied to characterize the spatiotemporal evolution of temperature and CO in AP-HTPB and AP-HTPB-aluminum propellant flames at pressures between 1 and 40 bar. The results presented here demonstrate that ULAS in the mid-IR can provide high-fidelity, calibration-free measurements of gas properties with sub-nanosecond time resolution in harsh, high-pressure combustion environments representative of rocket motors.

     
    more » « less
  3. This manuscript describes the first application of ultrafast-laser-absorption spectroscopy (ULAS) to characterizing high-pressure (up to 40 bar), multi-phase combustion gases. Single-shot measurements of temperature and CO were acquired at 5 kHz in AP-HTPB propellant flames with and without aluminum. An ultrafast light source was used to produce broadband pulses of light near 4.96 𝜇m at a repetition rate of 5 kHz and a high-speed mid-infrared imaging spectrometer was used to image the pulses across an 86 nm bandwidth with a spectral resolution of 0.7 nm. Measurements of temperature and CO concentration were obtained by least-squares fitting simulated absorbance spectra of CO to measured spectra. A system of corrective optics was used to diminish the e˙ect of beam steering during high-pressure experiments, greatly increasing the pressure capabilities of the diagnostic. The diagnostic was used to characterize AP-HTPB propellant flames in an argon bath gas at pressures of 1, 10, 20, and 40 bar. An aluminized AP-HTPB propellant was also characterized at 10 and 20 bar to demonstrate that ULAS can provide high-fidelity measurements in particulate-laden flames. The results demonstrate that ULAS is capable of providing single-shot temperature and species measurements at high pressures with 1-𝜎 precisions less than 1.1% and 3% for temperature and species respectively, despite non-absorbing transmission losses in excess of 90%. 
    more » « less
  4. This paper presents a data-processing technique that improves the accuracy and precision of absorption-spectroscopy measurements by isolating the molecular absorbance signal from errors in the baseline light intensity (Io) using cepstral analysis. Recently, cepstral analysis has been used with traditional absorption spectrometers to create a modified form of the time-domain molecular free-induction decay (m-FID) signal, which can be analyzed independently fromIo. However, independent analysis of the molecular signature is not possible when the baseline intensity and molecular response do not separate well in the time domain, which is typical when using injection-current-tuned lasers [e.g., tunable diode and quantum cascade lasers (QCLs)] and other light sources with pronounced intensity tuning. In contrast, the method presented here is applicable to virtually all light sources since it determines gas properties by least-squares fitting a simulated m-FID signal (comprising an estimatedIoand simulated absorbance spectrum) to the measured m-FID signal in the time domain. This method is insensitive to errors in the estimatedIo, which vary slowly with optical frequency and, therefore, decay rapidly in the time domain. The benefits provided by this method are demonstrated via scanned-wavelength direct-absorption-spectroscopy measurements acquired with a distributed-feedback (DFB) QCL. The wavelength of a DFB QCL was scanned across the CO P(0,20) and P(1,14) absorption transitions at 1 kHz to measure the gas temperature and concentration of CO. Measurements were acquired in a gas cell and in a laminar ethylene–air diffusion flame at 1 atm. The measured spectra were processed using the new m-FID-based method and two traditional methods, which rely on inferring (instead of rejecting) the baseline error within the spectral-fitting routine. The m-FID-based method demonstrated superior accuracy in all cases and a measurement precision that was≈<#comment/>1.5to 10 times smaller than that provided using traditional methods.

     
    more » « less